Adapting Precision Technologies to Soil Health Management

Jason Warren Oklahoma State University

Soil Health Management

 Systems based approach to managing the chemical, physical, and biological soil characteristics that impact productivity and offsite environmental impacts

Soil health Indicators

- Chemical
 - > pH
 - Nitrogen
 - Macro Nutrients
 - Micro Nutrients
 - Clay Type
 - Biological
 - Organic Matter
 - Microbial Activity

- Physical
 - > Depth
 - > Texture
 - Structure
 - > Landscape Position

- Macrobial Activity
- Microbial Diversity

Framework for Soil Health Assessment

- We have framework for nutrients,
 - A great deal of precision Ag efforts have focused on this
- Framework exists for physical characteristics
 - Soil survey Crop Productivity index
 - > lowa corn suitability rating
 - Not available in all states due to lack of validation
 - Mapping unit scale is often too large

Framework for Soil health Assessment

- Biological Indicators
 - > These need a great deal of work
 - There are volumes of data, but little or no data relating biological indicators to productivity or environmental impacts
 - Data available is not robust enough for state wide applications
 - We are left with a "more is better" approach with no threshold for management.

Organic matter is a great example

- It is often said that higher organic matter equals higher yields
- How did the organic matter get there in the first place?

Role of precision ag technologies

- Identify soils with poor "health"
 - > Productivity
 - Environmental impacts
 - Identify limitations
- Identify variable response to soil health promoting practices
 - Utilize strip trials to identify soil conditions were cover crops and/or no-till provide response

Complexity of Soil Productivity

- There are many factors that influence soil productivity
- It is a very complex system
- Precision Ag technologies must be used to manage the system

pH vs Yield

P vs Yield

Soil Map, Ponca City

Deep Core Soil Samples

Relationship Between Limiting Layer and Yield

 Yield was generally well related to the depth of restrictive layer and water holding capacity of the soil

Elevation vs Depth to Restrictive Layer

Some mapping units are very Heterogeneous (Taloka Silt Loam, Ottawa Co.)

Relationship Between Limiting Layer and Yield (Ottowa Co)

 Limiting layer is defined as the layer with a clay content above 35%, containing Redoximorphic features (drainage problem)

Healthy soils "can" make more Grain

Summary

- Not all soils are created equal
- We don't lime all soils
- Why should we impose the same soil health promoting practices to all soils
 - We need to learn what factors influence success and impose soil health practices accordingly

Questions

- Jason.warren@okstate.edu
- @oksoilwater
- www.soilwater.okstate.edu