

Every farmer knows RTK

Auto-steer

Data Collection

- I) Accuracy
- 2) Reliability
- 3) Expensive
- 4) Usability

Limited RTK

Shipments of GNSS devices by region

High price tag

Core revenue from GNSS device sales by application

Roots in the sky

Real time kinematics

Normal GPS

Accurate to a few meters

- Several sources of error
 - Signal measurement: "code" can only be measured to several meters.
 - Ionospheric delay: slowing of GPS signals.

RTK GPS

Accurate to a few centimeters - 100x precision

- Mitigates errors via two methods
 - **Signal measurement**: "carrier" phase to under a centimeter. Solve for "integer ambiguity" in number of carrier cycles.
 - Ionospheric delay: A base station broadcasts corrections to the roving to cancel out ionospheric delays.

Anywhere on earth, to the centimeter

Introducing Piksi

Proprietary Real Time Kinematics (RTK) GPS software

Centimeter accurate positioning

10x Cheaper (\$500 vs. \$5000+)

An open stack for easy integration Easy to use library and API

Why now?

Precision agriculture

More Automation

New Technology

Unsolved Problems

Data Driven

Case study: UAV imagery

The Problem

- Low Resolution
- Ground Control points

Our Solution

- Geo-tagging imagery with higher accuracy GPS improve image stitching to deliver higher quality imagery
- High accuracy GPS allows "ground truthing" with few or no ground control points

Thank you