

InfoAg 2015

www.adapt-n.com

866-208-FARM

grow@adapt-n.com

About us

Greg Levow

Co-founder
Agronomic Technology Corp
greg@agronomic.com

Dr. Harold van Es

Cornell University Professor Soil Science & Water Management hmv1@cornell.edu

Nitrogen: Elusive and complex

Nitrogen:

- How much N did I lose from Tuesday's 2" rainfall?
- It's been cold, how much N has my soil mineralized?
- How much less N will I lose if I add a stabilizer?
- What impact will switching to no-till have on my N needs?
- What happens if the rest of the season is dry? Wet?
- Will I need less N if I switch from fall to spring pre-plant?
- Should I apply variable rate nitrogen?

Adapt-N answers these questions for agronomists and growers, and creates win-win performance improvements

Objectives today

- Adapt-N overview and why it's different
- Research methodology, results, and key learnings
- Agronomic inputs and recommendations in detail
- N modeling in a precision ag approach
- Data privacy

Adapt-N

- Set the standard for nitrogen modeling
- Built on 10+ years of land-grant research
- Demonstrated to improve grower profit while reducing N loss
- 100% independent, unbiased, and transparent
- Designed for agronomists, recognized by the industry

Robust Nitrogen Modeling

User Inputs:

Adapt-N Simulations:

High-Resolution Climate Data (Precip, Temp, Solar Radiation)

13 Interrelated Software Models

- Crop growth, N uptake, N loss, manure, etc.
- 2,000+ proprietary soil dictionary records

- Daily recommendations
- PDF reports
- Shapefile + agX export
- Interactive graphs
- N-Alerts
- Prior-season analysis

Nitrogen Recommendation

Grower: Smith Farming Farm: Corey's Farm Field: Skunk River East Zone: Main Zone

Nitrogen recommendation for July 30, 2014:

160 lbs N/Acre N recommendation 143-179 N recommendation range

Recommendation based on supporting estimates and assumptions:

205 lbs N/Acre	74 lbs N/Acre	117 lbs N/Acre
Expected N in crop at harvest	N mineralization so far	N loss so far
O lbs N/Acre	52 lbs N/Acre	23 lbs N/Acre
Partial credit from prior crop	N in crop now	Expected future loss
2 lbs N/Acre Expected future mineralization	6 lbs N/Acre N in soil now	13.6" / 28.0" Rainfall since planting / Rainfall since 01/01/14

Field information

Soil: Webster

Maturity Class: Grains: 107 day corn

Planted: 06/01/14 Expected Yield: 200.0 bu/acre

Harvest Population: 30,000 Organic Matter %: 3.5

Previous Crop: Grain Corn

N fertilizer already applied: 100 lbs N/Acre

Irrigation Applied: None Manure Applied: No Adapt-N Zone ID: 8758

Adapt-N: Functionality and Field Testing

Disclosure

According to Cornell University policy, I am disclosing that I have an equity interest in Agronomic Technology Corp, which has received a license for the use and further development of the Adapt-N tool.

This tool was developed as part of my Cornell research program, and Agronomic Technology Corp is providing some support to my program for the further development of this technology.

Many sources of variation in N availability

- generalized recommendations are too simplistic!
 - Organic amendments (manure, compost, etc.)
 - Crop rotations
 - Soil type differences (at multiple scales)
 - Soil organic matter contents
 - Soil and crop management (tillage, planting date, etc.)
 - Weather:
 - Temperature
 - Precipitation!

Interactions are complex and nonlinear

Regional Increases in Very Heavy Precipitation Events (1958-2007)

Inner Workings of Adapt-N

(in short)

PNM model: The core of the Adapt-N tool

13 interconnected soil and crop models:

- Based on long-term modeling efforts at leading international institutions going back to the 1980's
- Includes comprehensive literature knowledge
- Calibrated and tested with extensive field studies
- Accesses high-resolution weather data and extensive soil databases

Hutson, J.L., R.J. Wagenet, and M.E. Niederhofer. 2003. Leaching Estimation And Chemistry Model: a process-based model of water and solute movement, transformations, plant uptake, and chemical reactions in the unsaturated zone. Version 4. Dept of Crop and Soil Sciences. Research Series No. R03-1. Cornell University, Ithaca, NY, USA.

Sinclair, T.R., and R.C. Muchow. 1995. Effect of nitrogen supply on maize yield: I. modeling physiological responses. Agronomy Journal 87:632-641.

Soil Water Dynamics

- **Solotious**
- Simulates soil water conditions throughout profile (20 layers)
- Parameterized using soil dictionaries
- Accounts for soil and management conditions

Major N Processes in Adapt-N Model

- Net additions:
 - Mineralization immobilization
 - Urea hydrolysis
- **Transformations**
 - **Nitrification**
- Losses
 - Denitrification (nitrification)
 - Ammonia volatilization
 - Leaching
 - Plant N uptake
- Modifications for Enhanced Efficiency Compounds

Making the models work

Lysimeter Experiments

- New York and Minnesota
- N fertilizer and manure (rate and timing)
- N losses measured
- Results used for model calibration

18 m (clay loam) / 15 m (loamy sand)

drain

"impermeable layer"

Independent Model Evaluation

Nitrate-N Leaching

Melkonian et al., 2010

Adapt-N-Recommendation Methodology

N Rate =

Expected N in Crop

Input: Expected Yield

- N in Crop Now - N in Soil Now

Simulation based on actual real-time weather

- Prior Crop Credit

Partial simulation, partial fixed credit

- Net N Future N Losses and Gains

Probabilistic simulations based on historical weather

- Price-Profit-Risk Factor

Probability-uncertainty simulations

Risk Components

Differential Impact of Under and Over-Fertilization due to Nonlinear-Asymmetrical Yield Response to N

Stochastic Gross Returns:
$$\left(\int_{-\infty}^{\infty} \left(\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}*GR\right)\right)$$

Adapt-N Strip Trials

Validating and Improving the Tool

Adapt-N Model Calibration and Testing

- 200+ Cornell University-coordinated replicated strip trials in 10 states (Midwest, Northeast, Mid-Atlantic, Southeast)
- In collaboration with researchers and consultants
- Adapt-N vs. Grower rates or Multi-rate N response trials
- Additional "informal" testing
- Funded by many organizations

Strip Trial Design

- Spatially balanced designs with at least 4 replications
- Trials include:
 - Soil sampling, before/during/after the season. Stalk sampling
 - Soil health evaluation
 - Multiple N rates to compute the retrospective economic optimum rate
 - Comparisons with standard recommendations (MRTN, etc.)
 - Trial design with in-field variability

2011-14 Grower vs Adapt-N Strip Trials

Iowa and New York (n=126)

2011-14 Grower vs Adapt-N Strip Trials

Soil Texture and Organic Matter Content

Grower vs Adapt-N Rates - Iowa

Grower vs Adapt-N Rates – New York

Profit differences for 2011-2014 strip trials in NY and IA

Comparing Adapt-N rate recommendations with Grower rates

Comparison of Adapt-N and Grower N rates

2011-14 on-farm strip trials in Iowa and New York

State-Year	NY2011	NY2012	NY2013	NY2014	IA2011	IA2012	IA2013	Mean
N input diff (lbs/ac)	-62.7	-66	19.1	-32.6	-16.7	-27.6	-19.3	-29.4
Yield diff (bu/ac)	-0.05	-1.85	20.60	-3.20	1.90	-0.45	0.50	2.49
Profit diff (\$/ac)	\$34.1	\$23.93	\$93.63	\$0.95	\$21.6	\$14.35	\$12.2	\$28.68

Comparison of Adapt-N and Grower N rates: Simulated environmental losses

Iowa and New York Trials 2011-14

Leaching losses reduced by 35%

Gaseous losses reduced by 40%

2013-14 Multi-Rate Trials:

Wisconsin, Indiana, Ohio (n=42)

Wisconsin 2013 EONR vs Adapt-N

Indiana-Ohio 2014 EONR vs Adapt-N

Early Sidedress

Lessons Learned

- Adapt-N offers win-win solutions
- Importance of good input data to achieve precise recommendations
- Recent upgrades have improved recommendations
- Complex models are needed to deal with diversity of conditions

Creating recommendations

Loading field data

Fundamental objective: minimize time

- Make use of data where it already exists
- Agree on and use a data standard
- Streamline workflows

Manage Data. Harvest Information.

Web-based

Flexible zone creation options

N rec for flat rate application or basic nitrogen analysis

Simple VRT, or analysis by soil type, yield goal, organic matter, etc.

Powerful multi-variable VRT prescriptions, exportable to other systems

Agronomic inputs

- Soil Type/Texture
- Slope
- Soil Organic Matter
- Prior crop info
- Planting info, expected yield
- Tillage method and details
- Existing and expected applications:
 - · Nitrogen rate, type, placement, date, stabilizer
 - · Manure type, rate, incorporation, and analysis
 - Irrigation

We go where the data is

Example: Using Shapefiles to load soil organic matter data in grid-sampled or zone-sampled format.

We go where the data is

Example: Syncing soil test data from another system

We go where the data is

Soil Organic Matter		Last Updated by Greg Levow (Adapt-N Staff) on July 15	5th, 2015 05:55 PM ET
Enter a constant value	Soil Test Sample Depth (Inches) 0.0	Constant Soil Organic Matter % 0.0	Submit

Users always have the option to enter data manually.

summar

logou

FIELD RECOMMENDATION

Recommendation for 07/28/2015

0 / 41 / 95 / 1,378

lbs N/acre (min/avg/max/total)

Grower FIPS 19 - Iowa

Farm FIPS 125 - Marion

Field Knoxville

Acres 34

Export Recommendation

FIELD CONFIGURATION .

Planting Date 05/05/2015

Maturity Class Grains: 99 day corn

Previous Crop Grain Corn

Tillage Method Conservation Tillage

Rainfall Since Planting 19.1" Estimated Growth Stage V18

	min	avg	max
Organic Matter (%)	1.20	2.35	3.70
Harvest Population	27,500	28,153	35,000
Yield Target (bu/acre)	160	165	220

- 0 14 (5.37 acres)
- 15 29 (0.00 acres)
- 30 44 (14.33 acres)
- 45 59 (7.08 acres)
- 60 74 (4.26 acres)
- 9 75 89 (3.21 acres)
- 90 104 (0.18 acres)
- 105+ (0.00 acres)

summar

logou

FIELD RECOMMENDATION

Recommendation for 07/28/2015

0 / 41 / 95 / 1,378

lbs N/acre (min/avg/max/total)

Grower FIPS 19 - Iowa

Farm FIPS 125 - Marion

Field Knoxville

Acres 34

Export Recommendation

FIELD CONFIGURATION .

Planting Date 05/05/2015

Maturity Class Grains: 99 day corn

Previous Crop Grain Corn

Tillage Method Conservation Tillage

Rainfall Since Planting 19.1" Estimated Growth Stage V18

	min	avg	max
Organic Matter (%)		2.35	3.70
Harvest Population	27,500	28,153	35,000
Yield Target (bu/acre)	160	165	220

- 0 14 (5.37 acres)
- 15 29 (0.00 acres)
- 30 44 (14.33 acres)
- 45 59 (7.08 acres)
- 45 59 (7.06 acres)
- 60 74 (4.26 acres)
- 75 89 (3.21 acres)
- 90 104 (0.18 acres)
- 105+ (0.00 acres)

summar

logou

FIELD RECOMMENDATION

Recommendation for 07/28/2015

0 / 41 / 95 / 1,378

lbs N/acre (min/avg/max/total)

Grower FIPS 19 - Iowa

Farm FIPS 125 - Marion

Field Knoxville

Acres 34

Export Recommendation

FIELD CONFIGURATION .

Planting Date 05/05/2015

Maturity Class Grains: 99 day corn

Previous Crop Grain Corn

Tillage Method Conservation Tillage

Rainfall Since Planting 19.1" Estimated Growth Stage V18

	min	avg	max
Organic Matter (%)	1.20	2.35	3.70
Harvest Population	27,500	28,153	35,000
Yield Target (bu/acre)	160	165	220

- 0 14 (5.37 acres)
- 15 29 (0.00 acres)
- 30 44 (14.33 acres)
- 9 45 59 (7.08 acres)
- 60 74 (4.06 55755)
- 60 74 (4.26 acres)
- 75 89 (3.21 acres)90 104 (0.18 acres)
- 90 104 (0.16 acres)
- 105+ (0.00 acres)

summar

logout

FIELD RECOMMENDATION

Recommendation for 07/28/2015

0 / 41 / 95 / 1,378

lbs N/acre (min/avg/max/total)

Grower FIPS 19 - Iowa

Farm FIPS 125 - Marion

Field Knoxville

Acres 34

Export Recommendation

FIELD CONFIGURATION .

Planting Date 05/05/2015

Maturity Class Grains: 99 day corn

Previous Crop Grain Corn

Tillage Method Conservation Tillage

Rainfall Since Planting 19.1"

Estimated Growth Stage V18

	min	avg	max
Organic Matter (%)	1.20	2.35	3.70
Harvest Population	27,500	28,153	35,000
Yield Target (bu/acre)	160	165	220

- 0 14 (5.37 acres)
- 15 29 (0.00 acres)
- 30 44 (14.33 acres)
- 45 59 (7.08 acres)
- 60 74 (4.26 acres)
- 75 89 (3.21 acres)
- 90 104 (0.18 acres)
- 105+ (0.00 acres)

summar

logou

FIELD RECOMMENDATION

Recommendation for 07/28/2015

0 / 41 / 95 / 1,378

lbs N/acre (min/avg/max/total)

Grower FIPS 19 - Iowa

wa Export Recommendation

Farm FIPS 125 - Marion

Field Knoxville

Acres 34

FIELD CONFIGURATION

Planting Date 05/05/2015

Maturity Class Grains: 99 day corn

Previous Crop Grain Corn

Tillage Method Conservation Tillage

Rainfall Since Planting 19.1"

Estimated Growth Stage V18

	min	avg	max
Organic Matter (%)	1.20	2.35	3.70
Harvest Population	27,500	28,153	35,000
Yield Target (bu/acre)	160	165	220

- 0 14 (5.37 acres)
- 15 29 (0.00 acres)
- 30 44 (14.33 acres)
- 45 59 (7.08 acres)
- 60 74 (4.26 acres)
- 75 89 (3.21 acres)
- 90 104 (0.18 acres)
- 105+ (0.00 acres)

Supporting estimates

Created for 2015-Jul-28.

Farm: FIPS 125 - Marion Field: Knoxville Zone: vrt196 (2015) Soil Type: Ladoga Planted: 2015-05-05 Growth Stage: V18 Google

lbs N/Acre Sidedress N Recommendation Rec Range (lbs N/Acre)

N Fertilizer Already Applied

Recommendation based on 2015's configuration and the simulation year's supporting estimates, and assumptions:

Expected N in crop at harvest

lbs N/Acre Partial credit from soybeans

lbs N/Acre Future Net N Credits

Current Nitrate N top 12" Virtual PSNT: 0.3 ppm

lbs N/Acre N in soil now

Water in root zone / field capacity

lhs N/Acre Expected Future Fertilizer Loss

Rainfall since planting / since 01/01/15

Root zone inorganic N

View as a short or full PDF. View Graphs. Get help with these values.

Data was last updated 2015-Jul-28 18:26:07 ET.

Detailed support for all recommendations gives users key insights into our modeling results so ground observations and other tools can be used in complement.

Graphs provide detailed insight

Graphs provide detailed insight

Multi-year analysis

Select from historical weather years to compare recommendations under different scenarios

2015 vs. 2012 (lowa)

Flexible export options

Export Type			
Shapefile	٧		
Nitrogen Product		Percentage	
UAN (32-0-0) (Liquid)	٧	100%	~
Empty Area Treatment		Value	
Set to field avg	٧	N/A	
Set Floor Value (Min)		Value	
Select	٧	N/A	
Set Ceiling Value (Max)		Value	
Set to custom value	~	90	

Export as a Shapefile or to other systems in whatever form of nitrogen will be applied

Adapt-N rec as a Shapefile

Daily dashboards

GROWERS, FARMS & FIELDS	ACTIVE	ACRES	STAGE	RECOMMENDATION	Viewing: Active Field PAST APPLIED	ds - ACTION
Grower: Miller Farms (MN)	-	153	V0 - V18	+Nitrogen		
Farm/Field: Home Farm (MN) / Northeast Quarter	~	146	V18 - V18	45 - 45 lbs/acre	60.0 - 60.0 lbs/acre	٥
Farm/Field : Waite Park / County Hwy 6	~	7	V17 - V17	105 - 105 lbs/acre	120.0 - 120.0 lbs/acre	٥
Grower: Nyman Farms (NY)	-	22	V0 - V18	+Nitrogen		
Farm/Field : Home Farm / Middle Road 22	~	22	V18 - V18	0 - 110 lbs/acre	0.0 - 100.0 lbs/acre	٥
Grower: Ohlson Farms (OH)	-	31	V0 - V18	+Nitrogen		
Farm/Field: Woodville Farm / Home 30	~	31	V18 - V18	50 - 90 lbs/acre	0.0 - 35.0 lbs/acre	۵
Grower: Williams Farms (WI)	-	52	V0 - V19	+Nitrogen		
Farm/Field: Williams Dairy - Home Farm (WI) / Quarry 33	~	33	V19 - V19	60 - 65 lbs/acre	0.0 - 0.0 lbs/acre	٥

Quickly view the N needs and status across all growers based on daily summary dashboards

Email/SMS alerts

The following fields and/or zones have recommended Nitrogen application values that exceed their alert threshold. Summary:

- 3 farms
- 3 fields
- 4 zones, max: 85, min: 65, avg: 73

Alert Threshold: 40

Farm	Field	Zone	Stage	Rec
Jones	Jones	Main	V5	65
Reed	Reed	Main	V5	85
Reed	Reed	adapt N Trial	V5	75
Rons	Rons	adapt N Trial	V5	70

Recommendations generated at 2015-06-10 04:47:05 Eastern.

Widely deployed and growing

- 28 states and expanding
- Additional crops being added

Adapt-N in a precision ag program

- Enables sales agronomists to provide a consistent nitrogen recommendation service across the territory
- We don't market directly to growers, but enable your brand to provide scientifically-based N recs as a service
- Flexible account structure: dashboards, multi-user, alerts, reporting, and login access for your growers (if desired)
- Identify/enhance additional crop nutrition sales opportunities, while providing an environmentally responsible N management service
- Margin opportunities for your precision program

Data Privacy and Security

- Data intent
- Grower Bill of Rights
- HTTPS Encryption

. When we work with a partner, it is done on behalf of our Grower community. Our partners must understand and be aligned with

of the data will see)

the Grower Bill of Rights.

· To whom we are providing the results

· Our partners must be aligned with our Grower Bill of Rights

What the process is around ending your participation in the program

Thank you!

Greg Levow greg@agronomic.com 866-208-FARM

Dr. Harold van Es hmv1@cornell.edu

